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AP-sets and van der Waerden theorem

Definition.

A set A C Nis called an AP-set if it contains arbitrary long
arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least
one of them is again an AP-set.
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AP-sets and van der Waerden theorem

Definition.

A set A C Nis called an AP-set if it contains arbitrary long
arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least
one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on N
— van der Waerden ideal denoted by W
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The van der Waerden ideal W is

e atall ideal — because every infinite A C N contains an infinite
subset with no arithmetic progressions of length 3
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Van der Waerden ideal W

The van der Waerden ideal W is

e atall ideal — because every infinite A C N contains an infinite
subset with no arithmetic progressions of length 3

o F,-ideal — because W = | J,,cjy Wh Where
Wn = {A C N : A contains no a. p. of length n}

e not a P-ideal — consider for example the sets
Ac={2"+k:new}fork cw
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Van der Waerden ideal W

Szemerédi Theorem.

WC Z where Z:{AQN:Iimsup‘A—:n’:O}

n—oo
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Van der Waerden ideal W

Szemerédi Theorem.

WC Z where Z:{AQN:Iimsup‘A—:n’:O}

n—oo
Erdds Conjecture.

1
W C Ty, where I1/n:{AgN:ZE<OO}
acA
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Cardinal invariants of ideals on w

Definition (Hernandez-Hernandez, Hrusak).

Let 7 be a tall ideal on w containing the ideal of finite sets.
Define the following cardinals associated with Z:

add*(Z) = min{|A|: ACTA(VIeT)(TAc A)(AZ* I)}
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Cardinal invariants of ideals on w

Definition (Hernandez-Hernandez, Hrusak).

Let 7 be a tall ideal on w containing the ideal of finite sets.
Define the following cardinals associated with Z:

add*(Z) = min{|A|: ACTA(VIeT)(TAc A)(AZ* I)}

cov*(Z) = min{|A|: ACZA (VX € [w]™)(3A € A)(JAN X| = Rg)}
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Cardinal invariants of ideals on w

Definition (Hernandez-Hernandez, Hrusak).

Let Z be a tall ideal on w containing the ideal of finite sets.
Define the following cardinals associated with Z:

add*(Z) = min{|A|: ACTA(VIeT)(TAc A)(AZ* I)}

cov*(Z) = min{|A|: ACZA (VX € [w]™)(3A € A)(JAN X| = Rg)}

cof*(Z) = min{lA|: ACTA(VIeI)(IAc AT A)}
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Cardinal invariants of ideals on w

Definition (Hernandez-Hernandez, Hrusak).

Let Z be a tall ideal on w containing the ideal of finite sets.
Define the following cardinals associated with Z:

add*(Z) = min{|A|: ACTA (¥ eT)FAc A)(AZ )}
cov*(Z) = min{|A|: ACZA (VX € [w]™)(3A € A)(JAN X| = Rg)}
cof*(Z) = min{|A|: ACTAVIeI)IAc A)(C A}

non*(Z) = min{|A|: A C [w] A (V€ T)EA € A)(ANI| < Ro)}
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Cardinal invariants of ideals on w

The inequalities holding among these cardinals are
summarized in the following diagram:

cov*(Z)

I

Ng — add*(Z) cof*(Z) —— 2%

e

non*(Z)

VAN

References
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Lower bound for non*(W)

Theorem 1. non*(W) > cov(M)
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Lower bound for non*(W)

Theorem 1. non*(W) > cov(M)

Sketch of the proof:

References
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1. cov(M) = min{|F| : F s.t. (Vg € w*)(3f € F)(V<n)f(n) # g(n)}
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Lower bound for non*(W)

Theorem 1. non*(W) > cov(M)

Sketch of the proof:
1. cov(M) = min{|F| : F s.t. (Vg € w¥)(3f € F)(V°n)f(n) # g(n)}
2. w=Upe,, In where I, = [2";2"1)
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A=\ undefined otherwise
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Lower bound for non*(W)

Theorem 1. non*(W) > cov(M)

Sketch of the proof:
1. cov(M) = min{|F| : F s.t. (Vg € w*)(3f € F)(V<n)f(n) # g(n)}
2. w=Upe,, In where I, = [2";2"1)
3. Forevery Ac A C [w]™ define f4: w — w
a_{rmmmmm it lhNA#D

undefined  otherwise

4. If |A] < cov(M) then (3g € w)(VA € A)(3>*n)fa(n) = g(n)
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Lower bound for non*(W)

Theorem 1. non*(W) > cov(M)

Sketch of the proof:
. cov(M) = min{|F| : F s.t. (Vg € w*)(3f € F)(V>°n)f(n) # g(n)}
2. w=Upe,, In where I, = [2";2"1)

—_

3. Forevery Ac A C [w]™ define f4: w — w

£ min(l,NA) ifl,NA#D
A=\ undefined otherwise

N

. If|A| < cov(M) then (3g € w¥)(VA € A)(3>*n)fa(n) = g(n)

[

. I={g(n):new}eWand|InA] =X forevery Ac A
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Upper bound for non*(W)

Theorem 2. non*(W) <t
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Upper bound for non*(W)

Theorem 2. non*(W) <t

Sketch of the proof:
1. Ildentify Nwith A = {{m,n) e w x w:n<m}
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Upper bound for non* (W)

Theorem 2. non*(W) <t

Sketch of the proof:
1. Ildentify Nwith A = {{m,n) e w x w:n<m}

2. Let R be a hereditarily reaping family of size ¢
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Sketch of the proof:
1. Ildentify Nwith A = {{m,n) e w x w:n<m}
2. Let R be a hereditarily reaping family of size ¢
3. ForRe Rand n € w put

Agppn={(mn eA:me R m>n}
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Upper bound for non*(W)

Theorem 2. non*(W) <t

Sketch of the proof:
1. Ildentify Nwith A = {{m,n) e w x w:n<m}
2. Let R be a hereditarily reaping family of size ¢
3. ForRe Rand n € w put

Agppn={{mn eA:me R m>n}

4. Show that for every I € 7 there exists R € R, k € N with

|A,q’k N /‘ < Np
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More bounds for non*(W)

If Z C 7 are two tall ideals on N then non*(Z) < non*(J).
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More bounds for non*(W)

If Z C 7 are two tall ideals on N then non*(Z) < non*(J).

Theorem (Hernandez-Hernandez, Hrusak).

non*(Z) < max{o,non(N)}
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More bounds for non*(W)

If Z C 7 are two tall ideals on N then non*(Z) < non*(J).

Theorem (Hernandez-Hernandez, Hrusak).

non*(Z) < max{o,non(N)}

Corollary 3. non*(W) < max{o, non(N\)}
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Questions about upper bounds for non*(W)

Question A.  Does non*(W) < v hold in ZFC?
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Questions about upper bounds for non*(W)
Question A.  Does non*(W) < v hold in ZFC?

NO.
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Questions about upper bounds for non*(W)
Question A.  Does non*(W) < v hold in ZFC?

NO. In the dual Hechler model » = &y and non*(W) = R,.
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NO. In the dual Hechler model » = &y and non*(W) = R,.

Question B.  Does non*(W) < non(N) hold in ZFC?
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Questions about upper bounds for non*(W)
Question A.  Does non*(W) < v hold in ZFC?

NO. In the dual Hechler model » = &y and non*(W) = R,.

Question B.  Does non*(W) < non(N) hold in ZFC?

VERY LIKELY YES.
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Questions about upper bounds for non*(W)
Question A.  Does non*(W) < v hold in ZFC?

NO. In the dual Hechler model » = &y and non*(W) = R,.

Question B.  Does non*(W) < non(N) hold in ZFC?

VERY LIKELY YES. Because non*(Zy,,) < non(N) (H.-H., Hr.)
and non*(W) < non*(Zy ;) if Erdos Conjecture is true.
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Questions about lower bounds for non*(W)

Theorem (Hernandez-Hernandez, Hru$ak).

non*(Z) > min{o, cov(N)}
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Questions about lower bounds for non*(W)

Theorem (Hernandez-Hernandez, Hrusak).

non*(Z) > min{o, cov(N)}

Question C.  Does non*(W) > min{o, cov(N)} hold in ZFC?
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Questions about lower bounds for non*(W)

Theorem (Hernandez-Hernandez, Hrusak).

non*(Z) > min{o, cov(N)}

Question C.  Does non*(W) > min{o, cov(N)} hold in ZFC?

What about other small cardinals — b, b, p etc.?
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Additivity number of W

The additivity number of an ideal Z is uncountable
if and only if

the ideal Z is a P-ideal.

References
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Additivity number of W

The additivity number of an ideal Z is uncountable
if and only if

the ideal Z is a P-ideal.

Observation 4. add* (W) =Ny

References
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Cofinality number of W

Proposition 5. cof*(W) = 2%
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Cofinality number of W
Proposition 5. cof*(W) = 2%

Sketch of the proof:

1. Show that there exists a perfect set P C “w such that every
f € P satisfies f(n+ 1) > 2f(n) for every n € w and whenever
fo, fi, ... fx € P are distinct, there exist infinitely many n € w such
that {f(n), fi(n),...f(n)} is a set of k + 1 successive integers.
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Cofinality number of W
Proposition 5. cof*(W) = 2%

Sketch of the proof:

1. Show that there exists a perfect set P C “w such that every
f € P satisfies f(n+ 1) > 2f(n) for every n € w and whenever
fo, fi, ... fx € P are distinct, there exist infinitely many n € w such
that {f(n), fi(n),...f(n)} is a set of k + 1 successive integers.

2. As={f(n):new}ecWforeveryfc P
3. {f € P: A; C* B} isfinite for every B € W
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Covering number of W
Theorem (Herndndez-Hernandez, Hrusak).

cov*(Z) > min{b, cov(N)}
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Covering number of W
Theorem (Hernandez-Hernandez, Hrusak).

cov*(Z) > min{b, cov(N)}

Corollary 6. cov*(W) > min{b, cov(N)}
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Covering number of W
Theorem (Hernandez-Hernandez, Hrusak).

cov*(Z) > min{b,cov(N)}

Corollary 6. cov*(W) > min{b, cov(N)}

Conjectures.
1. cov*(W) < non(M)
2. cov¥(W) > s

References
o

3. cov*(W) < max{b,non(N)} and many more...
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