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Introduction Uniformity Other invariants References

AP-sets and van der Waerden theorem

Definition.
A set A ⊆ N is called an AP-set if it contains arbitrary long
arithmetic progressions.

Van der Waerden Theorem.
If an AP-set is partitioned into finitely many pieces then at least
one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on N
— van der Waerden ideal denoted byW
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Van der Waerden idealW

The van der Waerden idealW is

• a tall ideal — because every infinite A ⊆ N contains an infinite
subset with no arithmetic progressions of length 3

• Fσ-ideal — becauseW =
⋃

n∈NWn where

Wn = {A ⊆ N : A contains no a. p. of length n}

• not a P-ideal — consider for example the sets

Ak = {2n + k : n ∈ ω} for k ∈ ω
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Van der Waerden idealW

Szemerédi Theorem.

W ⊆ Z where Z = {A ⊆ N : lim sup
n→∞

|A ∩ n|
n

= 0}

Erdős Conjecture.

W ⊆ I1/n where I1/n = {A ⊆ N :
∑
a∈A

1
a
<∞}
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Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).
Let I be a tall ideal on ω containing the ideal of finite sets.
Define the following cardinals associated with I:

add∗(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(A 6⊆∗ I)}

cov∗(I) = min{|A| : A ⊆ I ∧ (∀X ∈ [ω]ℵ0)(∃A ∈ A)(|A ∩ X | = ℵ0)}

cof∗(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆∗ A)}

non∗(I) = min{|A| : A ⊆ [ω]ℵ0 ∧ (∀I ∈ I)(∃A ∈ A)(|A ∩ I| < ℵ0)}
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Cardinal invariants of ideals on ω

The inequalities holding among these cardinals are
summarized in the following diagram:

cov∗(I)

%%
ℵ0 // add∗(I)

99

%%

cof∗(I) // 2ℵ0

non∗(I)

99
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Lower bound for non∗(W)

Theorem 1. non∗(W) ≥ cov(M)

Sketch of the proof:

1. cov(M) = min{|F| : F s.t. (∀g ∈ ωω)(∃f ∈ F)(∀∞n)f (n) 6= g(n)}

2. ω =
⋃

n∈ω In where In = [2n; 2n+1)

3. For every A ∈ A ⊆ [ω]ℵ0 define fA : ω → ω

fA =

{
min(In ∩ A) if In ∩ A 6= ∅
undefined otherwise

4. If |A| < cov(M) then (∃g ∈ ωω)(∀A ∈ A)(∃∞n)fA(n) = g(n)

5. I = {g(n) : n ∈ ω} ∈ W and |I ∩ A| = ℵ0 for every A ∈ A
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Upper bound for non∗(W)

Theorem 2. non∗(W) ≤ r

Sketch of the proof:

1. Identify N with ∆ = {〈m,n〉 ∈ ω × ω : n ≤ m}

2. Let R be a hereditarily reaping family of size r

3. For R ∈ R and n ∈ ω put

AR,n = {〈m,n〉 ∈ ∆ : m ∈ R,m ≥ n}

4. Show that for every I ∈ I there exists R ∈ R, k ∈ N with

|AR,k ∩ I| < ℵ0
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More bounds for non∗(W)

If I ⊆ J are two tall ideals on N then non∗(I) ≤ non∗(J ).

Theorem (Hernández-Hernández, Hrušák).

non∗(Z) ≤ max{d,non(N )}

Corollary 3. non∗(W) ≤ max{d,non(N )}
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Questions about upper bounds for non∗(W)

Question A. Does non∗(W) ≤ d hold in ZFC?

NO. In the dual Hechler model d = ℵ1 and non∗(W) = ℵ2.

Question B. Does non∗(W) ≤ non(N ) hold in ZFC?

VERY LIKELY YES. Because non∗(I1/n) ≤ non(N ) (H.-H., Hr.)
and non∗(W) ≤ non∗(I1/n) if Erdős Conjecture is true.
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Questions about lower bounds for non∗(W)

Theorem (Hernández-Hernández, Hrušák).

non∗(Z) ≥ min{d, cov(N )}

Question C. Does non∗(W) ≥ min{d, cov(N )} hold in ZFC?

What about other small cardinals — b, h, p etc.?
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Additivity number ofW

The additivity number of an ideal I is uncountable

if and only if

the ideal I is a P-ideal.

Observation 4. add∗(W) = ℵ0
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Cofinality number ofW

Proposition 5. cof∗(W) = 2ℵ0

Sketch of the proof:

1. Show that there exists a perfect set P ⊆ ωω such that every
f ∈ P satisfies f (n + 1) > 2f (n) for every n ∈ ω and whenever
f0, f1, . . . fk ∈ P are distinct, there exist infinitely many n ∈ ω such
that {f0(n), f1(n), . . . fk (n)} is a set of k + 1 successive integers.

2. Af = {f (n) : n ∈ ω} ∈ W for every f ∈ P

3. {f ∈ P : Af ⊆∗ B} is finite for every B ∈ W



Introduction Uniformity Other invariants References

Cofinality number ofW

Proposition 5. cof∗(W) = 2ℵ0

Sketch of the proof:

1. Show that there exists a perfect set P ⊆ ωω such that every
f ∈ P satisfies f (n + 1) > 2f (n) for every n ∈ ω and whenever
f0, f1, . . . fk ∈ P are distinct, there exist infinitely many n ∈ ω such
that {f0(n), f1(n), . . . fk (n)} is a set of k + 1 successive integers.

2. Af = {f (n) : n ∈ ω} ∈ W for every f ∈ P

3. {f ∈ P : Af ⊆∗ B} is finite for every B ∈ W



Introduction Uniformity Other invariants References

Cofinality number ofW

Proposition 5. cof∗(W) = 2ℵ0

Sketch of the proof:

1. Show that there exists a perfect set P ⊆ ωω such that every
f ∈ P satisfies f (n + 1) > 2f (n) for every n ∈ ω and whenever
f0, f1, . . . fk ∈ P are distinct, there exist infinitely many n ∈ ω such
that {f0(n), f1(n), . . . fk (n)} is a set of k + 1 successive integers.

2. Af = {f (n) : n ∈ ω} ∈ W for every f ∈ P

3. {f ∈ P : Af ⊆∗ B} is finite for every B ∈ W



Introduction Uniformity Other invariants References

Cofinality number ofW

Proposition 5. cof∗(W) = 2ℵ0

Sketch of the proof:

1. Show that there exists a perfect set P ⊆ ωω such that every
f ∈ P satisfies f (n + 1) > 2f (n) for every n ∈ ω and whenever
f0, f1, . . . fk ∈ P are distinct, there exist infinitely many n ∈ ω such
that {f0(n), f1(n), . . . fk (n)} is a set of k + 1 successive integers.

2. Af = {f (n) : n ∈ ω} ∈ W for every f ∈ P

3. {f ∈ P : Af ⊆∗ B} is finite for every B ∈ W



Introduction Uniformity Other invariants References

Covering number ofW

Theorem (Hernández-Hernández, Hrušák).

cov∗(Z) ≥ min{b, cov(N )}

Corollary 6. cov∗(W) ≥ min{b, cov(N )}

Conjectures.

1. cov∗(W) ≤ non(M)

2. cov∗(W) ≥ s

3. cov∗(W) ≤ max{b,non(N )} and many more...
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